Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.041
Filtrar
1.
Eur J Pharmacol ; 967: 176370, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38320719

RESUMO

At least seven dominantly inherited spinocerebellar ataxias (SCA) are caused by expansions of polyglutamine (polyQ)-encoding CAG repeat. The misfolded and aggregated polyQ-expanded proteins increase reactive oxygen species (ROS), cellular toxicity, and neuroinflammation in the disease pathogenesis. In this study, we evaluated the anti-inflammatory potentials of coumarin derivatives LM-021, LMDS-1, LMDS-2, and pharmacological chaperone tafamidis using mouse BV-2 microglia and SCA3 ataxin-3 (ATXN3)/Q75-GFP SH-SY5Y cells. The four tested compounds displayed anti-inflammatory activity by suppressing nitric oxide (NO), interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α production, and CD68 antigen (CD68) and histocompatibility-2 (MHCII) expression in lipopolysaccharides (LPS)/interferon (IFN)-γ-stimulated BV-2 microglia. In retinoic acid-differentiated ATXN3/Q75-GFP-expressing SH-SY5Y cells inflamed with LPS/IFN-γ-primed BV-2 conditioned medium, treatment with test compounds mitigated the increased caspase 1 activity and lactate dehydrogenase release, reduced ROS and ATXN3/Q75 aggregation, and promoted neurite outgrowth. Examination of IL-1ß and IL-6-mediated signaling pathways revealed that LM-021, LMDS-1, LMDS-2, and tafamidis decreased NLR family pyrin domain containing 1 (NLRP1), c-Jun N-terminal kinase/c-Jun proto-oncogene (JNK/JUN), inhibitor of kappa B (IκBα)/P65, mitogen-activated protein kinase 14/signal transducer and activator of transcription 1 (P38/STAT1), and/or Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling. The study results suggest the potential of LM-021, LMDS-1, LMDS-2, and tafamidis in treating SCA3 and probable other polyQ diseases.


Assuntos
Doença de Machado-Joseph , Neuroblastoma , Animais , Humanos , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Interleucina-1beta/antagonistas & inibidores , Interleucina-6 , Lipopolissacarídeos/farmacologia , Doença de Machado-Joseph/tratamento farmacológico , Doença de Machado-Joseph/genética , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
2.
Blood Adv ; 7(24): 7471-7484, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37934948

RESUMO

Canakinumab, a monoclonal antibody targeting proinflammatory cytokine interleukin-1ß (IL-1ß), improved hemoglobin levels while preventing recurrent cardiovascular events in the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). This cardiovascular (CV) preventive effect was greater in patients with TET2 mutations associated with clonal hematopoiesis (CH). The current proteogenomic analysis aimed to understand the clinical response to canakinumab and underlying proteomic profiles in the context of CH and anemia. The analysis included 4595 patients from the CANTOS study who received either canakinumab or placebo and evaluated multiplexed proteomics (4785 proteins) using SomaScan and targeted deep sequencing for CH mutations. Incident anemia was more common in the presence of CH mutations but reduced by canakinumab treatment. Canakinumab treatment was significantly associated with higher hemoglobin increment in patients with concurrent CH mutations and anemia than patients with CH mutations without anemia or without CH mutations. Compared with those without CH mutations, the presence of CH mutations was associated with proteomic signatures of inflammation and defense response to infection, as well as markers of high-risk CV disease which was further enhanced by the presence of anemia. Canakinumab suppressed hepcidin, proinflammatory cytokines, myeloid activation, and complement pathways, and reversed pathologically deregulated pathways to a greater extent in patients with CH mutations and anemia. These molecular findings provide evidence of the clinical use of IL-1ß blockade and support further study of canakinumab for patients with concurrent anemia and CH mutations. This study was registered at www.clinicaltrials.gov as #NCT01327846.


Assuntos
Anemia , Anticorpos Monoclonais Humanizados , Hematopoiese Clonal , Proteínas de Ligação a DNA , Dioxigenases , Interleucina-1beta , Humanos , Anemia/tratamento farmacológico , Anemia/etiologia , Hematopoiese Clonal/genética , Citocinas , Hemoglobinas , Interleucina-1beta/antagonistas & inibidores , Proteômica , Anticorpos Monoclonais Humanizados/uso terapêutico , Proteínas de Ligação a DNA/genética , Dioxigenases/genética
3.
Cancer Immunol Res ; 11(6): 777-791, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37040466

RESUMO

High levels of IL1ß can result in chronic inflammation, which in turn can promote tumor growth and metastasis. Inhibition of IL1ß could therefore be a promising therapeutic option in the treatment of cancer. Here, the effects of IL1ß blockade induced by the mAbs canakinumab and gevokizumab were evaluated alone or in combination with docetaxel, anti-programmed cell death protein 1 (anti-PD-1), anti-VEGFα, and anti-TGFß treatment in syngeneic and humanized mouse models of cancers of different origin. Canakinumab and gevokizumab did not show notable efficacy as single-agent therapies; however, IL1ß blockade enhanced the effectiveness of docetaxel and anti-PD-1. Accompanying these effects, blockade of IL1ß alone or in combination induced significant remodeling of the tumor microenvironment (TME), with decreased numbers of immune suppressive cells and increased tumor infiltration by dendritic cells (DC) and effector T cells. Further investigation revealed that cancer-associated fibroblasts (CAF) were the cell type most affected by treatment with canakinumab or gevokizumab in terms of change in gene expression. IL1ß inhibition drove phenotypic changes in CAF populations, particularly those with the ability to influence immune cell recruitment. These results suggest that the observed remodeling of the TME following IL1ß blockade may stem from changes in CAF populations. Overall, the results presented here support the potential use of IL1ß inhibition in cancer treatment. Further exploration in ongoing clinical studies will help identify the best combination partners for different cancer types, cancer stages, and lines of treatment.


Assuntos
Interleucina-1beta , Neoplasias , Microambiente Tumoral , Animais , Camundongos , Linhagem Celular Tumoral , Docetaxel/farmacologia , Imunidade , Imunoterapia , Neoplasias/tratamento farmacológico , Interleucina-1beta/antagonistas & inibidores
4.
J Biol Chem ; 298(9): 102312, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35921894

RESUMO

Cytokine-induced beta cell dysfunction is a hallmark of type 2 diabetes (T2D). Chronic exposure of beta cells to inflammatory cytokines affects gene expression and impairs insulin secretion. Thus, identification of anti-inflammatory factors that preserve beta cell function represents an opportunity to prevent or treat T2D. Butyrate is a gut microbial metabolite with anti-inflammatory properties for which we recently showed a role in preventing interleukin-1ß (IL-1ß)-induced beta cell dysfunction, but how prevention is accomplished is unclear. Here, we investigated the mechanisms by which butyrate exerts anti-inflammatory activity in beta cells. We exposed mouse islets and INS-1E cells to a low dose of IL-1ß and/or butyrate and measured expression of inflammatory genes and nitric oxide (NO) production. Additionally, we explored the molecular mechanisms underlying butyrate activity by dissecting the activation of the nuclear factor-κB (NF-κB) pathway. We found that butyrate suppressed IL-1ß-induced expression of inflammatory genes, such as Nos2, Cxcl1, and Ptgs2, and reduced NO production. Butyrate did not inhibit IκBα degradation nor NF-κB p65 nuclear translocation. Furthermore, butyrate did not affect binding of NF-κB p65 to target sequences in synthetic DNA but inhibited NF-κB p65 binding and RNA polymerase II recruitment to inflammatory gene promoters in the context of native DNA. We found this was concurrent with increased acetylation of NF-κB p65 and histone H4, suggesting butyrate affects NF-κB activity via inhibition of histone deacetylases. Together, our results show butyrate inhibits IL-1ß-induced inflammatory gene expression and NO production through suppression of NF-κB activation and thereby possibly preserves beta cell function.


Assuntos
Anti-Inflamatórios não Esteroides , Butiratos , Diabetes Mellitus Tipo 2 , Inibidores de Histona Desacetilases , Inflamação , Células Secretoras de Insulina , Interleucina-1beta , NF-kappa B , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Butiratos/farmacologia , Ciclo-Oxigenase 2/metabolismo , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/patologia , Regulação da Expressão Gênica , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Histonas/metabolismo , Inflamação/genética , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacologia , Camundongos , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/biossíntese , RNA Polimerase II/metabolismo
5.
Eur J Pharmacol ; 925: 174998, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35533739

RESUMO

OBJECTIVE: To assess which immunosuppressive drugs have been investigated and proven efficacious in patients with cardiovascular disease (CVD) or type 2 diabetes (T2D) without preexisting immune mediated disorders to validate in vitro and animal model findings on low grade inflammation (bedside-to-bench). METHODS: Clinical trials on immunosuppressive drugs in CVD or T2D were found in PubMed. Studies on patients with preexisting immune mediated inflammatory disease were excluded. A total of 19 clinical trials testing canakinumab, anakinra, methotrexate, colchicine, hydroxychloroquine, etanercept and sulfasalazine were found. RESULTS: Canakinumab and colchicine significantly reduced the risk of CVD, whereas methotrexate did not. Sulfasalazine showed no effect on vascular function. Anakinra and hydroxychloroquine had a positive effect on glycemic control and ß-cell function in T2D. Etanercept had no effect in patients with T2D. CONCLUSION: The observed results indicate that immunosuppressive drugs specifically targeting IL-1ß hold promise for dampening CVD and T2D. These findings validate in vitro and animal models showing involvement of the IL-1-axis in the pathogenesis of CVD and T2D. The use of immunosuppressive drugs targeting the chronic inflammation in these diseases could be a possible future treatment strategy as an add-on to the existing pharmacological treatment of CVD and T2D. However, potential treatment effects, adverse events and cost-effectiveness should be carefully considered with importance for drug development.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Agentes de Imunomodulação , Imunossupressores , Inflamação , Interleucina-1beta , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Colchicina/farmacologia , Colchicina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Etanercepte/farmacologia , Etanercepte/uso terapêutico , Humanos , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/uso terapêutico , Terapia de Imunossupressão , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Inflamação/tratamento farmacológico , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Interleucina-1/antagonistas & inibidores , Interleucina-1beta/antagonistas & inibidores , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Sulfassalazina/farmacologia , Sulfassalazina/uso terapêutico
6.
Int J Mol Sci ; 23(9)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35563427

RESUMO

Bladder inflammatory diseases cause various urinary symptoms, such as urinary frequency and painful urination, that impair quality of life. In this study, we used a mouse model of cyclophosphamide (CYP)-induced bladder inflammation and immortalized human urothelial (TRT-HU1) cells to explore the preventive potential of nobiletin (NOB), a polymethoxylated flavone enriched in citrus fruit peel, and investigate its mechanism of action in the bladder. Prophylaxis with PMF90 (60% NOB) attenuated the development of bladder inflammation and urinary symptoms in CYP-treated mice. PMF90 also reduced the upregulation of connexin 43 (Cx43), a major component of gap junction channels, in the bladder mucosa of CYP-treated mice. Stimulation of TRT-HU1 cells with the pro-inflammatory cytokine IL-1ß increased Cx43 mRNA and protein expression and enhanced gap junction coupling-responses that were prevented by pre-treatment with NOB. In urothelium-specific Cx43 knockout (uCx43KO) mice, macroscopic signs of bladder inflammation and changes in voiding behavior induced by CYP treatment were significantly attenuated when compared to controls. These findings indicate the participation of urothelial Cx43 in the development of bladder inflammation and urinary symptoms in CYP-treated mice and provide pre-clinical evidence for the preventive potential of NOB through its anti-inflammatory effects on IL-1ß signaling and urothelial Cx43 expression.


Assuntos
Conexina 43 , Cistite , Flavonas , Junções Comunicantes , Interleucina-1beta , Animais , Comunicação , Conexina 43/genética , Conexina 43/metabolismo , Ciclofosfamida/toxicidade , Cistite/induzido quimicamente , Cistite/tratamento farmacológico , Feminino , Flavonas/metabolismo , Flavonas/farmacologia , Flavonoides/metabolismo , Junções Comunicantes/metabolismo , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/metabolismo , Masculino , Camundongos , Regulação para Cima , Urotélio/metabolismo
7.
Int Immunol ; 34(10): 493-504, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-35639943

RESUMO

The human body is exposed to various particulates of industrial, environmental, or endogenous origin. Invading or intrinsic particulates can induce inflammation by aberrantly activating the immune system, thereby causing crystallopathies. When immune cells such as macrophages phagocytose the particulates, their phagolysosomal membranes undergo mechanical damage, eventually leading to pyroptotic cell death accompanied by the release of inflammatory cytokines, including interleukin (IL)-1α and IL-1ß. The nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is responsible for particulate-induced IL-1ß release and is therefore regarded as a potential therapeutic target for inflammation-mediated crystallopathies. However, IL-1α is released after particulate stimulation in an NLRP3 inflammasome-independent manner and plays a critical role in disease development. Therefore, drugs that exert potent anti-inflammatory effects by comprehensively suppressing particulate-induced responses, including IL-1ß release and IL-1α release, should be developed. Here, we found that oridonin, a diterpenoid isolated from Isodon japonicus HARA, strongly suppressed particulate-induced cell death, accompanied by the release of IL-1α and IL-1ß in mouse and human macrophages. Oridonin reduced particulate-induced phagolysosomal membrane damage in macrophages without affecting phagocytosis of particulates. Furthermore, oridonin treatment markedly suppressed the symptoms of silica particle-induced pneumonia, which was attributed to the release of IL-1α independently of NLRP3. Thus, oridonin is a potential lead compound for developing effective therapeutics for crystallopathies attributed to NLRP3-dependent as well as NLRP3-independent inflammation.


Assuntos
Diterpenos do Tipo Caurano , Interleucina-1beta , Pulmão , Proteína 3 que Contém Domínio de Pirina da Família NLR , Material Particulado , Pneumonia , Animais , Diterpenos do Tipo Caurano/farmacologia , Diterpenos do Tipo Caurano/uso terapêutico , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/imunologia , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Material Particulado/toxicidade , Pneumonia/induzido quimicamente , Pneumonia/tratamento farmacológico , Pneumonia/imunologia
8.
JCI Insight ; 7(11)2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35471938

RESUMO

K-ras-mutant lung adenocarcinoma (KM-LUAD) is associated with abysmal prognosis and is tightly linked to tumor-promoting inflammation. A human mAb, canakinumab, targeting the proinflammatory cytokine IL-1ß, significantly decreased the risk of lung cancer in the Canakinumab Anti-inflammatory Thrombosis Outcomes Study. Interestingly, we found high levels of IL-1ß in the lungs of mice with K-rasG12D-mutant tumors (CC-LR mice). Here, we blocked IL-1ß using an anti-IL-1ß mAb in cohorts of 6- or 14-week-old CC-LR mice to explore its preventive and therapeutic effect, respectively. IL-1ß blockade significantly reduced lung tumor burden, which was associated with reprogramming of the lung microenvironment toward an antitumor phenotype characterized by increased infiltration of cytotoxic CD8+ T cells (with high IFN-γ and granzyme B expression but low programmed cell death 1 [PD-1] expression) while suppressing neutrophils and polymorphonuclear (PMN) myeloid-derived suppressor cells. When querying the Cancer Genome Atlas data set, we found positive correlations between IL1B expression and infiltration of immunosuppressive PMNs and expression of their chemoattractant, CXCL1, and PDCD1 expressions in patients with KM-LUAD. Our data provide evidence that IL-1ß blockade may be a preventive strategy for high-risk individuals and an alternative therapeutic approach in combination with currently available treatments for KM-LUAD.


Assuntos
Adenocarcinoma de Pulmão , Anticorpos Monoclonais Humanizados , Interleucina-1beta , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/imunologia , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Citocinas/biossíntese , Citocinas/imunologia , Genes ras , Humanos , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/imunologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Camundongos , Terapia de Alvo Molecular , Mutação , Neutrófilos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Microambiente Tumoral
9.
Mol Med Rep ; 25(4)2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35137920

RESUMO

Pentraxin 3 (PTX3), a member of the c­reactive protein family, is a long pentraxin protein and a pro­inflammatory marker. However, the role of PTX3 in preeclampsia (PE) remains to be elucidated. Thus, the present study aimed to investigate the biological role and mechanisms underlying PTX3 in PE. In the present study, PTX3 was overexpressed in trophoblasts and the subsequent changes in cell proliferation, cycle distribution and invasion were observed using Cell Counting Kit­8, flow cytometry and Transwell assays, respectively. Moreover, the expression levels of MMP2 and MMP9, proteins associated with the development of PE, were detected using reverse transcription­quantitative PCR and western blot analysis. Following treatment with interleukin (IL)­1ß, the expression levels of PTX3 were measured. Furthermore, subsequent changes in cell proliferation, cycle distribution and invasion were investigated following overexpression of PTX3 and treatment with IL­1 receptor antagonist (IL­1Ra). Overexpression of PTX3 inhibited the proliferation, cycle and invasion of HTR­8/SV neo and JEG3 cells. Moreover, treatment with IL­1ß increased the expression of PTX3 in HTR­8/SV neo and JEG3 cells, which was suppressed following treatment with the IL­1ß antagonist. Following PTX3 overexpression and treatment with IL­1Ra, the inhibitory effects of PTX3 overexpression alone on the invasion of HTR­8/SV neo and JEG3 cells were attenuated. In conclusion, these results indicated that IL­1ß could induce PTX3 upregulation, which led to the inhibition of the proliferation, invasion and cell cycle of trophoblasts, thereby promoting the progression of PE.


Assuntos
Proteína C-Reativa/metabolismo , Ciclo Celular/genética , Movimento Celular/genética , Proliferação de Células/genética , Interleucina-1beta/farmacologia , Pré-Eclâmpsia/metabolismo , Componente Amiloide P Sérico/metabolismo , Trofoblastos/metabolismo , Proteína C-Reativa/genética , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Interleucina-1beta/antagonistas & inibidores , Pré-Eclâmpsia/genética , Gravidez , Componente Amiloide P Sérico/genética , Trofoblastos/efeitos dos fármacos
10.
Mol Cell Biochem ; 477(5): 1329-1338, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35138513

RESUMO

Inflammation contributes to the pathogenesis of liver disease, and inflammasome activation has been identified as a major contributor to the amplification of liver inflammation. Transforming growth factor-beta (TGF-ß) is a key regulator of liver physiology, contributing to all stages of liver disease. We investigated whether TGF-ß is involved in inflammasome-mediated fibrosis in hepatic stellate cells. Treatment with TGF-ß increased priming of NLRP3 inflammasome signaling by increasing NLRP3 levels and activating TAK1-NF-kB signaling. Moreover, TGF-ß increased the expression of p-Smad2/3-NOX4 in LX-2 cells and consequently increased ROS content, which is a trigger for NLRP3 inflammasome activation. Elevated expression of NEK7 and active caspase-1 was also shown in TGF-ß-induced LX-2 cells, and this level was reduced by (5Z)-oxozeaenol, a TAK inhibitor. Finally, TGF-ß-treated cells significantly increased TGF-ß secretion levels, and their production was inhibited by IL-1ß receptor antagonist treatment. In conclusion, TGF-ß may represent an endogenous danger signal to the active NLRP3 inflammasome, by which IL-1ß mediates TGF-ß expression in an autocrine manner. Therefore, targeting the NLRP3 inflammasome may be a promising approach for the development of therapies for TGF-ß-induced liver fibrosis.


Assuntos
Inflamassomos , Fator de Crescimento Transformador beta , Células Estreladas do Fígado/metabolismo , Humanos , Inflamassomos/metabolismo , Inflamação/metabolismo , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator de Crescimento Transformador beta/metabolismo
11.
Clin Transl Med ; 12(2): e716, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35184395

RESUMO

BACKGROUND: Immunotransmitters (e.g., neurotransmitters and neuromodulators) could orchestrate diverse immune responses; however, the elaborated mechanism by which melatonergic activation governs inflammation remains less defined. METHODS: Primary macrophages, various cell lines, and Pasteurella multocida (PmCQ2)-infected mice were respectively used to illustrate the influence of melatonergic signalling on inflammation in vitro and in vivo. A series of methods (e.g., RNA-seq, metabolomics, and genetic manipulation) were conducted to reveal the mechanism whereby melatonergic signalling reduces macrophage inflammation. RESULTS: Here, we demonstrate that melatonergic activation substantially lessens interleukin (IL)-1ß-dependent inflammation. Treatment of macrophages with melatonin rewires metabolic program, as well as remodels signalling pathways which depends on interferon regulatory factor (IRF) 7. Mechanistically, melatonin acts via membrane receptor (MT) 1 to increase heat shock factor (Hsf) 1 expression through lowering the inactive glycogen synthase kinase (GSK3) ß, thereby transcriptionally inhibiting interferon (IFN)-γ receptor (IFNGR) 2 and ultimately causing defective canonical signalling events [Janus kinase (JAK) 1/2-signal transducer and activator of transcription (STAT) 1-IRF7] and lower IL-1ß production in macrophages. Moreover, we find that melatonin amplifies host protective responses to PmCQ2 infection-induced pneumonia. CONCLUSIONS: Our conceptual framework provides potential therapeutic targets to prevent and/or treat inflammatory diseases associating with excessive IL-1ß production.


Assuntos
Inflamação/tratamento farmacológico , Interleucina-1beta/antagonistas & inibidores , Fragmentos de Peptídeos/antagonistas & inibidores , Receptores de Interferon/efeitos dos fármacos , Animais , China , Modelos Animais de Doenças , Inflamação/fisiopatologia , Inflamação/prevenção & controle , Camundongos , Receptores de Interferon/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
Molecules ; 27(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35164164

RESUMO

Interleukin-1 beta (IL-1ß) has diverse physiological functions and plays important roles in health and disease. In this report, we focus on its function in the production of pro-inflammatory cytokines, including IL-6 and IL-8, which are implicated in several autoimmune diseases and host defense against infection. IL-1ß activity is markedly dependent on the binding affinity toward IL-1 receptors (IL-1Rs). Several studies have been conducted to identify suitable small molecules that can modulate the interactions between 1L-1ß and 1L-1R1. Based on our previous report, where DPIE [2-(1,2-Diphenyl-1H-indol-3-yl)ethanamine] exhibited such modulatory activity, three types of DPIE derivatives were synthesized by introducing various substituents at the 1, 2, and 3 positions of the indole group in DPIE. To predict a possible binding pose in complex with IL-1R1, a docking simulation was performed. The effect of the chemicals was determined in human gingival fibroblasts (GFs) following IL-1ß induction. The DPIE derivatives affected different aspects of cytokine production. Further, a group of the derivatives enabled synergistic pro-inflammatory cytokine production, while another group caused diminished cytokine production compared to DPIE stimulation. Some groups displayed no significant difference after stimulation. These findings indicate that the modification of the indole site could modulate IL-1ß:IL1R1 binding affinity to reduce or enhance pro-inflammatory cytokine production.


Assuntos
Citocinas/agonistas , Citocinas/antagonistas & inibidores , Indóis/farmacologia , Mediadores da Inflamação/agonistas , Mediadores da Inflamação/antagonistas & inibidores , Fenetilaminas/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Células Cultivadas , Citocinas/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Indóis/química , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-1beta/agonistas , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/metabolismo , Fenetilaminas/química
13.
Biochem Pharmacol ; 197: 114932, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35085541

RESUMO

Neck pain and low back pain are two of the major diseases, which causes patients a low quantify of life and a heavy economic burden, intervertebral disc degeneration (IDD) contributes to them, and the mechanism is not totally clear. The increased inflammatory cytokines including interleukin (IL)-1ß and tumor necrosis factor (TNF)α and downstream signaling pathways are involved. Inositol requiring enzyme 1 (IRE1) is a crucial enzyme that regulates endoplasmic reticulum (ER) stress. It is reported that IRE1 plays an important role in the activation of NF-κB, PI3K/Akt and MAPK signaling pathways. Considering this, we performed a series of experiments in vitro and in vivo to evaluate the role of IRE1 in the progress of IDD. We demonstrated that IRE1 pathway was induced by IL-1ß, inhibition of IRE1 suppressed the matrix degeneration of NP cells and ameliorated IDD grade in the punctured rat model. Further results indicated that inhibition of IRE1 suppressed H2O2 induced cell senescence, IL-1ß-induced cellular reactive oxygen species (ROS) level and the activation of NF-κB, PI3K/Akt and MAPK signaling pathways. It also played a crucial role in the apoptosis of NP cells and the progress of macrophage polarization. Our findings demonstrated that inhibition of IRE1 could suppress the degeneration of NP cells and prevent IDD in vivo. IRE1 may be a potential target for IDD treatment.


Assuntos
Endorribonucleases/metabolismo , Interleucina-1beta/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/prevenção & controle , Complexos Multienzimáticos/metabolismo , Núcleo Pulposo/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Endorribonucleases/antagonistas & inibidores , Interleucina-1beta/antagonistas & inibidores , Degeneração do Disco Intervertebral/patologia , Masculino , Complexos Multienzimáticos/antagonistas & inibidores , Núcleo Pulposo/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , RNA Interferente Pequeno/administração & dosagem , Ratos , Ratos Sprague-Dawley
14.
Br J Pharmacol ; 179(9): 1887-1907, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34825365

RESUMO

BACKGROUND AND PURPOSE: ZFP91 positively regulates IL-1ß production in macrophages and may be a potential therapeutic target to treat inflammatory-related diseases. We investigated whether this process is modulated by convallatoxin, which is a cardiac glycoside isolated from the traditional Chinese medicinal plant Adonis amurensis Regel et Radde. EXPERIMENTAL APPROACH: In vitro, the mechanisms by which convallatoxin inhibits ZFP91-regulated IL-1ß expression were investigated using molecular docking, western blotting, RT-PCR, ELISA, immunofluorescence and immunoprecipitation assays.In vivo, mice liver injury was induced by an intraperitoneal injection of D-GalN and LPS, colitis was induced by oral administration of dextran sulfate sodium (DSS) in drinking water and peritonitis was induced by an intraperitoneal injection of alum. KEY RESULTS: We confirmed that convallatoxin inhibited the release of IL-1ß by down-regulating ZFP91. Importantly, we found that convallatoxin significantly reduced K63-linked polyubiquitination of pro-IL-1ß regulated by ZFP91 and decreased the efficacy of pro-IL-1ß cleavage. Moreover, convallatoxin suppressed ZFP91-mediated activation of the non-canonical cysteine-requiring aspartate protease-8 (caspase-8) inflammasome and MAPK signalling pathways in macrophages. Furthermore, we showed that ZFP91 promoted the assembly of the caspase-8 inflammasome complex, whereas convallatoxin treatment reversed this result. Mice in vivo studies further demonstrated that convallatoxin ameliorated D-GalN/LPS-induced liver injury, DSS-induced colitis and alum-induced peritonitis by down-regulating ZFP91. CONCLUSION AND IMPLICATIONS: We show for the first time that convallatoxin-mediated inhibition of ZFP91 is an important regulatory event that prevents inappropriate inflammatory responses to maintain immune homeostasis. This mechanism provides new insight for the development of convallatoxin as a novel anti-inflammatory drug targeting ZFP91. LINKED ARTICLES: This article is part of a themed issue on Inflammation, Repair and Ageing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.9/issuetoc.


Assuntos
Caspase 8 , Inflamassomos , Interleucina-1beta , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estrofantinas , Animais , Caspase 1/metabolismo , Caspase 8/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estrofantinas/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Ubiquitinação , Dedos de Zinco
16.
Int J Immunopathol Pharmacol ; 35: 20587384211059675, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34928722

RESUMO

INTRODUCTION: The fully-human monoclonal anti-interleukin (IL)-1ß antibody canakinumab may inhibit the production of inflammatory mediators in patients with coronavirus disease 2019 (COVID-19) and the hyperinflammatory response potentially leading to acute respiratory distress syndrome. OBJECTIVES: The goal of our retrospective, observational analysis was to evaluate the safety and efficacy of subcutaneous (s.c.) canakinumab in combination with our standard of care (SOC) treatment of selected patients with COVID-19 with respiratory failure and elevated reactive pro-inflammatory markers. METHODS: Eight participants received two doses of s.c. canakinumab 150 mg (or 2 mg/kg for participants weighing ≤40 kg) in addition to SOC. 12 patients received only SOC treatment. RESULTS: Canakinumab treatment reduced the need for mechanical ventilation and reduced proinflammatory markers, resulting in an amelioration of the final outcome, with respect to the control group who received SOC alone. The treatment was safe and well tolerated; no adverse events were reported. CONCLUSION: The use of canakinumab (300 mg, s.c.) in the early stage of COVID-19 with mild-to-moderate respiratory failure was superior to SOC at preventing clinical deterioration and may warrant further investigation as a treatment option for patients with COVID-19 who experience a hyperinflammatory response in the early stage of the disease.


Assuntos
Anticorpos Monoclonais Humanizados , COVID-19 , Interleucina-1beta , Respiração Artificial , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/imunologia , Biomarcadores/sangue , COVID-19/complicações , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/terapia , Relação Dose-Resposta a Droga , Feminino , Humanos , Mediadores da Inflamação/sangue , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/imunologia , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Monitorização Imunológica/métodos , Avaliação de Processos e Resultados em Cuidados de Saúde , Seleção de Pacientes , Respiração Artificial/métodos , Respiração Artificial/estatística & dados numéricos , Estudos Retrospectivos , SARS-CoV-2 , Tempo para o Tratamento
17.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34829992

RESUMO

Cardiovascular disease (CAD) is the main cause of morbidity and deaths in the western world. The development of atherosclerosis underlying CAD development begins early in human life. There are numerous genetic and environmental risk factors accelerating its progression which then leads to the occurrence of acute events. Despite considerable progress in determining risk factors, there is still a lot of work ahead since identified determinants are responsible only for a part of overall CAD risk. Current therapies are insufficient to successfully reduce the risk of atherosclerosis development. Therefore, there is a need for effective preventive measures of clinical manifestations of atherosclerosis since the currently available drugs cannot prevent the occurrence of even 70% of clinical events. The shift of the target from lipid metabolism has opened the door to many new therapeutic targets. Currently, the majority of known targets for anti-atherosclerotic drugs focus also on inflammation (a common mediator of many risk factors), mechanisms of innate and adaptive immunity in atherosclerosis, molecule scavengers, etc. The therapeutic potential of cyclodextrins, protein kinase inhibitors, colchicine, inhibitors of p38 mitogen-activated protein kinase (MAPK), lipid dicarbonyl scavengers, a monoclonal antibody targeting interleukin-1ß, and P-selectin inhibitors is still not fully confirmed and requires confirmation in large clinical trials. The preliminary results look promising.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Aterosclerose/tratamento farmacológico , Imunidade Inata/efeitos dos fármacos , Inflamação/tratamento farmacológico , Imunidade Adaptativa/genética , Anti-Inflamatórios/uso terapêutico , Aterosclerose/imunologia , Aterosclerose/patologia , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Colchicina/uso terapêutico , Humanos , Imunidade Inata/genética , Inflamação/imunologia , Inflamação/patologia , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/genética , Selectina-P/antagonistas & inibidores , Selectina-P/genética , Fatores de Risco , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/genética
18.
Med Sci Monit ; 27: e934365, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34795200

RESUMO

BACKGROUND Autologous blood-derived products can target specific inflammatory molecular pathways and have potentially beneficial therapeutic effects on inflammatory pathologies. The purpose of this study was to assess in vitro the anti-inflammatory and anti-catabolic potential of an autologous blood product as a possible treatment for COVID-19-induced cytokine storm. MATERIAL AND METHODS Blood samples from healthy donors and donors who had recovered from COVID-19 were incubated using different techniques and analyzed for the presence of anti-inflammatory, anti-catabolic, regenerative, pro-inflammatory, and procatabolic molecules. RESULTS The highest concentrations of therapeutic molecules for targeting inflammatory pathways were found in the blood that had been incubated for 24 h at 37°C, whereas a significant increase was observed after 6 h of incubation in blood from COVID-19-recovered donors. Beneficially, the 6-h incubation process did not downregulate anti-COVID-19 immunoglobulin G concentrations. Unfortunately, increases in matrix metalloproteinase 9, tumor necrosis factor alpha, and interleukin-1 were detected in the product after incubation; however, these increases could be blocked by adding citric acid, with no effect on the concentration of the target therapeutic molecules. Our data allow for safer and more effective future treatments. CONCLUSIONS An autologous blood-derived product containing anti-inflammatory and anti-catabolic molecules, which we term Cytorich, has a promising therapeutic role in the treatment of a virus-induced cytokine storm, including that associated with COVID-19.


Assuntos
Anabolizantes/sangue , Anti-Inflamatórios/sangue , COVID-19/complicações , Síndrome da Liberação de Citocina/tratamento farmacológico , Adulto , Anabolizantes/isolamento & purificação , Anabolizantes/uso terapêutico , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/uso terapêutico , COVID-19/sangue , Síndrome da Liberação de Citocina/etiologia , Feminino , Humanos , Interleucina-1beta/antagonistas & inibidores , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Metabolismo/efeitos dos fármacos , Pessoa de Meia-Idade , Adulto Jovem , Tratamento Farmacológico da COVID-19
19.
Bioorg Med Chem Lett ; 53: 128415, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34662706

RESUMO

Inflammation and immunity are closely related to the occurrence and development of a variety of immune diseases. Although IL-1ß has been identified as a key cytokine in many immune diseases, safe and specific small molecular IL-1ß releasement inhibitors are still scarce and urgently required in clinic. The investigation prospect of triazoleis limited by its complicated pharmacological effect which exhibited inferior effects on IL-1ß and TNF-α. Herein, 36 novel derivatives were designed and synthesized, and nearly half of the derivatives exhibited much better selectivity on IL-1ß releasement inhibition as well as keep similar inhibitory activities to lead compound. In 20 µM, compound 19 exhibited IL-1ß releasement inhibitory activity (IC50 = 5.489 µM) which closed to the original compound, and 4.5-fold superior selectivity (SI = 4.71) to the lead compound (SI = 0.82). A probable SAR model of triazole derivatives for IL-1ß releasement inhibition and selectivity was also proposed, which might promote the discovery of more effective and specific IL-1ß releasement inhibitors in the future.


Assuntos
Descoberta de Drogas , Interleucina-1beta/antagonistas & inibidores , Triazóis/farmacologia , Relação Dose-Resposta a Droga , Humanos , Interleucina-1beta/imunologia , Estrutura Molecular , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
20.
J Med Chem ; 64(18): 13633-13657, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34506712

RESUMO

Studies have shown that the abnormal activation of the NLRP3 inflammasome is involved in a variety of inflammatory-based diseases. In this study, a high content screening model targeting the activation of inflammasome was first established and pterostilbene was discovered as the active scaffold. Based on this finding, total of 50 pterostilbene derivatives were then designed and synthesized. Among them, compound 47 was found to be the best one for inhibiting cell pyroptosis [inhibitory rate (IR) = 73.09% at 10 µM], showing low toxicity and high efficiency [against interleukin-1ß (IL-1ß): half-maximal inhibitory concentration (IC50) = 0.56 µM]. Further studies showed that compound 47 affected the assembly of the NLRP3 inflammasomes by targeting NLRP3. The in vivo biological activity showed that this compound significantly alleviated dextran sodium sulfate (DSS)-induced colitis in mice. In general, our study provided a novel lead compound directly targeting the NLRP3 protein, which is worthy of further research and structural optimization.


Assuntos
Anti-Inflamatórios/uso terapêutico , Colite/tratamento farmacológico , Inflamassomos/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Estilbenos/uso terapêutico , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/toxicidade , Linhagem Celular , Colite/induzido quimicamente , Sulfato de Dextrana , Feminino , Humanos , Interleucina-1beta/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Estrutura Molecular , Piroptose/efeitos dos fármacos , Estilbenos/síntese química , Estilbenos/toxicidade , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...